Freedom Diet

Welcome to freedomdiet.info


If you find this website useful please link to or mirror it.


Index
What is the Freedom Diet?
Toxicants in plants
Why plants may taste good
Why not fruit?
Why milk?
Why meat?
Why fish?
Regarding water
Raw vs cooked vs frozen vs dried
Human longevity
Longevity in dogs
Ageing not inherited
Calorie restriction
Diet related diseases
Recommended diet
Some wisdom
References
Links

What is the Freedom Diet?

The Freedom Diet is a true organic raw milk, meat and fish diet.
Water is optional.
Followers may eat as much as they like.
They generally avoid eating anything else.

Toxicants in plants:

The theory of my diet is as follows: unlike animals which can fight or flee to avoid being eaten, plants can't and so the plants (not the fruit, which is meant to be eaten) have to rely on chemical defenses (toxicants) instead so as to avoid being totally wiped out. Any plant that was as edible as an animal would be extinct (hence why carnivores that have to chase down and kill exist (because they have superior health and thus physical advantages from not eating plants). By eating plants you are fighting evolution!

Examples of some toxicants in plants include:


Why plants may taste good:

Even though plants always contain many nasty toxicants they may taste good, especially cultivated varieties. This is not because they are harmless, though cultivated varieties no doubt do less harm, but because of the way humans have evolved. If only foods that were 100% benign (free from toxicants, don't cause ageing or disease) were appetising or palatable then humans wouldn't have survived at all due to our inferior natural hunting abilities without weapons compared to other animals. Instead the human has evolved a compromise - foods that do limited immediate harm if they provide useful nutrients or energy taste okay and sometimes good, however they may still cause ageing and disease in the long run, but this was the price to pay to avoid imminent starvation. This however in the developed world is no longer a necessary compromise. Numerous foods are available year round. The rest may be imported. There is also refrigeration and freezing. So it is time to overcome our compromised sense of taste and eat intelligently. Just like it is unwise to use drugs because they may feel good it is unwise to eat food just because it tastes good. Not everything that tastes good is good, but everything that doesn't taste good isn't good (bitterness indicates poison).

Why not fruit?

Although fruit are meant to be eaten - the plants have evolved a mutually beneficial relationship with animals whereby animals spread their seeds in return for nutrition (this shouldn't be confused with eating the plants themselves which is mutually destructive), fruit is itself also harmful as plants bait animals with said fruit and then use them as a tool for the plants' own purposes not the animals' best interests.

Because it is in the reproductive survival interests of the plant that the animal deposits the seed a good distance from the parent plant it needs to get the animal to travel as far as possible after consuming its fruit and so it needs the animal to leave the plant from which it ate the fruit for something, and this something is to find a mate (to fornicate with) and it does this by making fruit sexually aggravating. Thus the animal seeks said mate and in all likelihood deposits the seed far from the plant and thus the plant's offspring are more likely to survive long-term, as for example if fire or disease affects one area, wiping the plants out, there may be offspring that escape said fate by being somewhere else where conditions didn't turn out that way. They also don't have to compete with their parent plants for sun, rain and nutrients.

Another evolutionary reason why fruit is sexually aggravating is that the plant needs to ensure that future generations of animals continue to eat its and its offsprings' fruit to spread their seeds, and the best way to achieve this is to select for as high a percentage of the animals that eat its fruit out of said animal population as a whole as possible, and it does this by hypersexually stimulating said animals that eat its fruit to producing more offspring than those that don't eat said fruit at all or significantly, thus overtime, because they mate more, the fruit-eaters come to dominate the animals' population and the population overall, which thus increases, thereby securing the future of said plant (the fruit will continue to be eaten and the seeds will continue to be spread).

Purely carnivorous species have a mating season which probably also stems from that of the plants, but indirectly, as the meat they eat will vary seasonally and thus affect said pure carnivores differently at different times of the year, maybe if their prey has recently eaten fruit then said sexually provocative fruit phytochemicals will be in the flesh or blood of the prey animal and thus provoke the carnivores too to reproduce

An example of fruits' effects in the wild is that bonobos and chimps (too distinct but closely related species) which are on different sides of a river that is they can't cross in the Congo Basin in the Democratic Republic of the Congo in Africa. On the bonobo-side is much more fruit than the chimp-side, and the bonobos are much more sexually active, mating frequently all year round, whereas the chimps, like most animals just mate seasonally.

It is also because of an unnatural year-round consumption of fruit that humans too are hypersexual, fornicating year-round which leads to many of modern society's problems, the solution of which may be to restrict or ban plant agriculture (the other parts of plants which cause malnutrition, disease and ageing) and to move the world to a perfect diet of preferably raw milk, meat and fish (from purely grass-fed and pharmaceutical-free, humanely raised and slaughtered livestock, and sustainable wild-caught carnivorous marine fish respectively). Dietary harmony leads to societal harmony.

As for vitamin C, raw milk in adequate quantities has easily enough to meet one's needs (heat treatment tends to destroy it). Carnitine from regular meat consumption might reduce some of one's vitamin C requirements as it performs many of the same end-functions. Raw meat and fish also contain small quantities of vitamin C. Vitamin C etc. supplements are all compromised by the pharmaceutical cartels which have a monopoly on them.

The sexual (universal slavery) revolution was brought about by forcing almost everyone to eat fruit for vitamin C, which they'll need unless they are on a zero-carb diet. Don't eat eggs (this is what they want: you'll then be evil like them). Drink raw true organic milk.

Only buy true organic: completely untreated milk, meat and fish from unvaccinated, undrugged, non-GMO grass-fed livestock, wild game and wild caught marine carnivorous fish. If possible slaughter your meat yourself. Avoid corporate suppliers if possible: most of them are in legion with the bankers and the deep state.

All fruit is the forbidden fruit! (sexual aggravation leads to the public's sexual excess, especially in conjunction with drugs or alcohol, which enables them to be pawned by the people of the same tribe as the multi-trillionaire international banking oligarchy (which controls nearly all of the world's politicians (and most everything else for that matter)), the politicians whom are all either blackmailed, bribed or otherwise corrupt (this was the real purpose of the sexual revolution, and year-round fruit production facilitated it; politicians who aren't compromised don't receive any press coverage until they are; i.e. politics is just a Punch and Judy show where the same group control both sides)).

The likely major reason that milk in most places around the world for the last century by law has to be pasteurised is so that the general milk-drinking population turns to fruit or gets scurvy: if the former they become sex-obsessed and are easily controlled or pawned, if the latter then they get sick and die.
Regardless, it keeps the people from rising up and overthrowing the oligarchy.
The problem with the world: the oligarchy want a yin-yang carma wheel of chaos (where they are free and the rest are evil or their slaves).
They don't want the people eating a perfect diet of raw milk, meat and fish for crime-free social harmony.
If everyone was eating the Freedom Diet it would solve everything.
The lack of affordable widespread availability of true organic raw milk has corrupted the food supply.

Be vigilant (and don't be blindsided by any rhetoric)!

Why milk?

Milk naturally provides many essential nutrients such as calcium, phosphorus, protein and B vitamins. The calcium in milk is easily absorbed and used by the body. It takes a substantial amount of other calcium-providing foods to match the amount of calcium and 8 other essential nutrients in one glass of milk. Milk is an affordable source of energy and the best way to hydrate.

Why meat?

Meat is a very good sources of protein, which is important for growth and development. It contains iodine to help your body produce thyroid hormone, iron to carry oxygen around your body, zinc to keep your immune system strong, your skin healthy, and for growth, development and reproductive health, vitamin B12 for your nervous system and omega 3 to support heart and brain health.

Why fish?

Fish is an excellent source of many nutrients providing energy, high-quality protein, iodine, selenium, zinc, iodine and vitamins A and D (some species only). Fatty fish is an excellent source of readily available long-chain omega-3 fatty acids, which are essential for life.

Regarding water:

Water, which is optional, is an anti-inflammatory sedative but is rarely unpolluted, so consume with discretion (i.e. if you are experiencing inflammation-based mental irritability): milk is superior for actual hydrating and doesn't have the same sedative-like effects.

Raw vs cooked vs frozen vs dried:

Cooking produces many toxic substances.

Potential harmful effects of cooked foods and cooking:

Several studies published since 1990 indicate that cooking muscle meat creates heterocyclic amines (HCAs), which are also components of cigarette smoke and car exhaust fumes. High rates of HCA can cause cancer in animals. Researchers at the National Cancer Institute found that human subjects who ate beef rare or medium-rare had less than one third the risk of stomach cancer than those who ate beef medium-well or well-done. Microwaving has been shown to reduce vitamin B12 levels in beef, pork and milk by 30-40% Nitrosamines, formed by cooking and preserving in salt and smoking, have been noted as being carcinogenic, being linked to colon cancer and stomach-cancer. Cooking also creates certain heat-created toxins, advanced glycation end products, otherwise known as AGEs. This reaction occurs both within the body and external to the body. Many cells in the body (for example endothelial cells, smooth muscle or cells of the immune system) from tissue such as lung, liver, kidney or peripheral blood bear the receptor for advanced glycation end products (RAGE) that, when binding AGEs, contributes to age and diabetes-related chronic inflammatory diseases, such as atherosclerosis, renal failure, arthritis, myocardial infarction, macular degeneration, cardiovascular disease, nephropathy, retinopathy, or neuropathy. Excretion of dietary AGEs is reduced in diabetics and lowering AGE intake may greatly reduce the impact of AGEs in diabetic patients and possibly improve prognosis. One study, comparing the effects of consuming either pasteurized, or homogenized/pasteurized, or unpasteurized milk, showed that pasteurized and homogenized/pasteurized milk might have an increased ability to evoke allergic reactions in patients allergic to milk. Also, toxic compounds called PAHs, or Polycyclic aromatic hydrocarbons, are formed by cooking, in addition to being a component of cigarette-smoke and car-exhaust fumes. They are known to be carcinogenic and an industrial pollutant. Acrylamide, a toxin found in roasted/baked/fried/grilled starchy foods, but not in boiled or raw foods, has been linked to endometrial and ovarian cancers.Ingested acrylamide is metabolised to a chemically reactive epoxide, glycidamide. The HEATOX(Heat Generated Food Toxins) project has published a report on acrylamide. Frying chickpeas, oven-heating winged beans, or roasting cereals at 200–280 degrees C reduces protein digestibility. Another study has shown that meat heated for 10 minutes at 130 °C, showed a 1.5% decrease in protein digestibility. Similar heating of hake meat in the presence of potato starch, soy oil, and salt caused a 6% decrease in amino acid content. There are various scientific reports, such as one by the Nutrition Society, which describe in detail the loss of vitamins and minerals caused by cooking. It has also been suggested that cooking food in a wood-burning stove may contribute to global warming.

Human longevity

The Chinese people in Hong Kong have the highest per capita meat consumption in the world, they have the world's longest life expectancy (see United Nations 2015 data), their health index is among the best in the world. Japan and South Korea have very high per capita fish and seafood consumption. Japanese people have the second longest life expectancy and had the second oldest supercentenarian. Vegetarianism there is virtually unheard of. Out of more than 60000 centenarians in the United States, 9000 in the United Kingdom and 3000 in Australia only 2 were verified vegans and vegetarians in general accounted for a great minority. The very vast majority of centenarians and all supercentenarians have consumed large quantities of meat.

Hong Kong: World Longest Life Expectancy, Highest Per Capita Meat Consumption.

Life expectancy at birth (years), UN World Population Prospects 2015:
1) Hong Kong 83.74 years (world longest)
2) Japan 83.31 years
3) Italy 82.84 years
7) Spain 82.28 years
14) South Korea 81.43
42) USA 78.88
World Average 71.4

What the countries with world's longest life spans eat:

The UN data shown below came from National Geographic website, article: what the world eats.

Average daily total meat products (livestock+seafood) consumption, percentage of total food intake by weight per person:
Hong Kong 32% (world highest)
Japan 18%
South Korea 16%
USA 14%
World 9%

Average daily total meat products (livestock+seafood) consumption, grams per person:
Hong Kong 695 (world highest)
USA 381
South Korea 339
Japan 288
World 173

Average daily seafood consumption, percentage of total food intake by weight per person:
Hong Kong 9%
Japan 9%
South Korea 7%
World 3%
USA 2%

Average daily seafood consumption, grams per person per day:
Hong Kong 195
South Korea 159
Japan 147
USA 59
World 52

Hong Kong has world's longest life span and it has a high per capita pork consumption.

Pork Consumption, calories per person per day (National Geographic, UNFAO 2011)
Hong Kong 394
World 120

National Geographic says:

As it has since 1980, a spurring point for the economy, Hong Kong consumes more meat per person—both calorically and in weight—than any other nation. At 695 grams per day, people in Hong Kong eat 60% more meat than the meat-eaters in New Zealand.

Hong Kong’s diet has changed drastically in the last 50 years, with the average person eating more grams of meat per day than any other food group.

South Korea experienced a rapid shift in diets beginning in the 1970s. As more animal products and produce were added to the plate, the proportion of calories earned from grains dropped from 76% to 43%.

Japan consumes more seafood per person than all other types of meat combined.

HK people eat almost 40% more meat than Americans, often they eat meats such as Chinese BBQ pork, pork belly, pig feet, all these are high in fat. One thing HK people eat quite a lot are seafood and sea fish which are known to provide protection against diabetes, cardiovascular diseases, cancer and more.

Up until 1970's HK people had shorter life expectancy and poorer health index than Americans, back then HK people ate lesser amount of red meat than Americans. Year by year dietary statistics show as HK people ate more red meat and seafood the longer increase in their life expectancy and better health index, as Americans eat lesser red meat the slower increase in life expectancy and their health index gets worst.

In Okinawa, as Okinawan increased eating more pork in the period from 1950's to 1990's the longer increase in life expectancy, but as Okinawan slowed down increase of pork consumption their life expectancy also slowed down in increase.

Nagano, another prefecture in Japan, had less pork consumption than Okinawa before 1990's, but as Nagano increased pork consumption, its life expectancy also increased to the point that it's now Japan's national longest. Nagano replaced Okinawa in longest life expectancy. Nagano's health index is among the best nationally.

Longevity in dogs

The reason why small dogs may live about 50% longer than large dogs (15 years old vs 10 years approximately on average) is that the smaller the dog the less it needs to eat and thus the cheaper it is to feed hence the owner is more able to afford dog food with a higher percent of meat and less grain or vegetable filler than compared to food for a larger dog i.e. quality over quantity. Dogs should live even longer yet if fed purely on raw meat fit for human consumption especially if done generationally.

Ageing not inherited

It makes no sense for ageing to be inherited as natural selection selects for those who produce the most healthy offspring. An individual that ages and therefor dies early is unable to continue to reproduce or care for their offspring. While women reach menopause which prevents them from reproducing men can reproduce for their entire lifespan and thus the longest possible lifespan without ageing begets the greatest potential number of offspring and thus selects for their genes in the generations that follow. So what causes ageing? Well what has an evolutionary vested interest in animals aging and thus having a limited lifespan? Plants do of their predators. As long lived successfully reproducing animals that eat plants pose the greatest threat to the survival of the plant, and thus animals that eat plants are aged by the plants that they eat as natural selection selects those plants that age their predators the most. Giant trees such as giant redwoods and giant sequoias can live for many hundreds if not thousands of years so this sort of lifespan is biologically possible (and those trees don't eat plants).

Calorie restriction

The primary reason why calorie restriction slows ageing (as demonstrated in rats and other animal models) is because generally speaking for the majority of people the less food you eat the less plant matter you eat (given that most people currently eat plants as part of their diet). The oxygen-free radicals commonly cited that cause cellular damage are frequently the result of plant digestion (though cooked food can sometimes have similar effects).

Diet related diseases


Recommended diet

Avoid corporate suppliers and buy the following:
Some wisdom

The three pillars of good health are Diet, Sleep and Abstinence.
The best motto for success is Vigilance.

In conclusion: consume true organic Raw Milk, Meat and Fish, live long and prosper!

If you find this website useful please link to or mirror it.

References

Shibamoto T, Bjeldanes LF. Introduction to Food Toxicology. 1993, Academic Press, San Diego, California
Watson DH, Ed. Natural Toxicants in Food. Progress and Prospects. Ellis Horwood Series in Food Science and Toxicology.
Liener IE. Implications of antinutritional components in soybean foods. Critical Reviews in Food Science and Nutrition 1994;34(1):31-67.
Concon JM. Food Science and Toxicology. Part A Principles and Concepts. 1988 Marcel Dekker, New York.
David Lary & Ralf Toumi,The atmospheric chemistry of HCN, CN and NCO,http://www.atm.ch.cam.ac.uk/acmsu/newsletter11/news8.html
Heaney Rk, Fenwick GR. Natural toxins and protective factors in Brassica species, including rapeseed.
Natural Toxins 1995;3(4):233-237.
Seawright AA. Directly toxic effects of plants chemicals which may occur in human and animals foods. Natural Toxins 1995;3:227-232.
http://pubs.rsc.org/en/Content/Database/AWB6411H10264
a b "National Cancer Institute - Heterocyclic Amines in Cooked Meats". Cancer.gov. 2004-09-15. Retrieved 2010-05-12.
Quan, R; Yang, C; Rubinstein, S; Lewiston, NJ; Sunshine, P; Stevenson, DK; Kerner Ja, JA (1992).
"Effects of microwave radiation on anti-infective factors in human milk". Pediatrics 89 (4 Pt 1): 667–9. PMID 1557249.
Raloff, Janet (1992). "Microwaving can lower breast milk benefits | Science News | Find Articles at BNET". Findarticles.com. Retrieved 2008-11-07.
López-Berenguer, C; Carvajal, M; Moreno, DA; García-Viguera, C (2007). "Effects of microwave cooking conditions on bioactive compounds present in broccoli inflorescences". Journal of agricultural and food chemistry 55 (24): 10001–7. doi:10.1021/jf071680t. PMID 17979232.
Watanabe, F; Abe, K; Fujita, T; Goto, M; Hiemori, M; Nakano, Y (1998). "Effects of Microwave Heating on the Loss of Vitamin B(12) in Foods". Journal of agricultural and food chemistry 46 (1): 206–210. doi:10.1021/jf970670x. PMID 10554220.
Larsson, SC; Bergkvist, L; Wolk, A (2006). "Processed meat consumption, dietary nitrosamines and stomach cancer risk in a cohort of Swedish women". International journal of cancer. Journal international du cancer 119 (4): 915–9. doi:10.1002/ijc.21925. PMID 16550597.
Jakszyn, P; Gonzalez, CA (2006). "Nitrosamine and related food intake and gastric and oesophageal cancer risk: a systematic review of the epidemiological evidence". World journal of gastroenterology 12 (27): 4296–303. PMID 16865769.
Cai, W; He, JC; Zhu, L; Peppa, M; Lu, C; Uribarri, J; Vlassara, H (2004). "High levels of dietary advanced glycation end products transform low-density lipoprotein into a potent redox-sensitive mitogen-activated protein kinase stimulant in diabetic patients". Circulation 110 (3): 285–91. doi:10.1161/01.CIR.0000135587.92455.0D. PMID 15249511.
Yamagishi, S; Matsui, T; Nakamura, K (2008). "Possible link of food-derived advanced glycation end products (AGEs) to the development of diabetes". Medical hypotheses 71 (6): 876–8. doi:10.1016/j.mehy.2008.07.034. PMID 18783891.
Uribarri, J; Peppa, M; Cai, W; Goldberg, T; Lu, M; He, C; Vlassara, H (2003). "Restriction of dietary glycotoxins reduces excessive advanced glycation end products in renal failure patients". Journal of the American Society of Nephrology 14 (3): 728–31.
doi:10.1097/01.ASN.0000051593.41395.B9. PMID 12595509. Peppa, M; Uribarri, J; Vlassara, H (2004). "The role of advanced glycation end products in the development of atherosclerosis". Current diabetes reports 4 (1): 31–6. doi:10.1007/s11892-004-0008-6. PMID 14764277.
Sakata, N; Imanaga, Y; Meng, J; Tachikawa, Y; Takebayashi, S; Nagai, R; Horiuchi, S (1999). "Increased advanced glycation end products in atherosclerotic lesions of patients with end-stage renal disease". Atherosclerosis 142 (1): 67–77. doi:10.1016/S0021-9150(98)00192-0. PMID 9920507.
Verzijl, N; Degroot, J; Ben, ZC; Brau-Benjamin, O; Maroudas, A; Bank, RA; Mizrahi, J; Schalkwijk, CG et al. (2002). "Crosslinking by advanced glycation end products increases the stiffness of the collagen network in human articular cartilage: a possible mechanism through which age is a risk factor for osteoarthritis". Arthritis and rheumatism 46 (1): 114–23. doi:10.1002/1529-0131(200201)46:1<114::AID-ART10025>3.0.CO;2-P. PMID 11822407.
Taki, K; Tsuruta, Y; Niwa, T (2008). "Cardiac troponin T and advanced glycation end-products in hemodialysis patients". American journal of nephrology 28 (5): 701–6. doi:10.1159/000127431. PMID 18431051.
Yamada, Y; Ishibashi, K; Ishibashi, K; Bhutto, IA; Tian, J; Lutty, GA; Handa, JT (2006). "The expression of advanced glycation endproduct receptors in rpe cells associated with basal deposits in human maculas". Experimental eye research 82 (5): 840–8. doi:10.1016/j.exer.2005.10.005. PMID 16364296.
Peppa, M; Raptis, SA (2008). "Advanced glycation end products and cardiovascular disease". Current diabetes reviews 4 (2): 92–100. doi:10.2174/157339908784220732. PMID 18473756.
Sugiyama, S; Miyata, T; Horie, K; Iida, Y; Tsuyuki, M; Tanaka, H; Maeda, K (1996). "Advanced glycation end-products in diabetic nephropathy". Nephrology, dialysis, transplantation 11 Suppl 5: 91–4. PMID 9044316.
Chibber, R; Molinatti, PA; Rosatto, N; Lambourne, B; Kohner, EM (1997). "Toxic action of advanced glycation end products on cultured retinal capillary pericytes and endothelial cells: relevance to diabetic retinopathy". Diabetologia 40 (2): 156–64. doi:10.1007/s001250050657. PMID 9049475.
Sugimoto, K; Yasujima, M; Yagihashi, S (2008). "Role of advanced glycation end products in diabetic neuropathy". Current pharmaceutical design 14 (10): 953–61. doi:10.2174/138161208784139774. PMID 18473845.
Høst A, Samuelsson EG (Feb 1988). "Allergic reactions to raw, pasteurized, and homogenized/pasteurized cow milk: a comparison. A double-blind placebo-controlled study in milk allergic children". Allergy 43 (2): 113–8. PMID 3284399.
http://www.atsdr.cdc.gov/tfacts69.html#bookmark02
http://www.cancer.gov/cancertopics/factsheet/Risk/heterocyclic-amines
Martí-Cid R, Llobet JM, Castell V, Domingo JL (Sep 2008). "Evolution of the dietary exposure to polycyclic aromatic hydrocarbons in Catalonia, Spain". Food Chem. Toxicol. 46 (9): 3163–71. doi:10.1016/j.fct.2008.07.002. PMID 18675309.
Gammon MD, Santella RM (Mar 2008). "PAH, genetic susceptibility and breast cancer risk: an update from the Long Island Breast Cancer Study Project". Eur. J. Cancer 44 (5): 636–40. doi:10.1016/j.ejca.2008.01.026. PMID 18314326.
http://ec.europa.eu/food/fs/sc/scf/out154_en.pdf
Hogervorst, JG; Schouten, LJ; Konings, EJ; Goldbohm, RA; Van Den Brandt, PA (2007). "A prospective study of dietary acrylamide intake and the risk of endometrial, ovarian, and breast cancer". Cancer epidemiology, biomarkers & prevention 16 (11): 2304–13. doi:10.1158/1055-9965.EPI-07-0581. PMID 18006919.
Joint FAO/WHO expert committee on food additives, Sixty-fourth meeting, Rome, 8–17 February 2005, Summary and conclusions. [1] Retrieved on 2008-01-01
"HEATOX - Heat-generated food toxicants: identification, characterisation and risk minimisation (Project no. 506820) Final report - Food Quality and Safety" (PDF). Retrieved 2009-04-24.
Oste, RE (1991). "Digestibility of processed food protein". Advances in experimental medicine and biology 289: 371–88. PMID 1897402.
Oste, RE (1991). "Digestibility of processed food protein". Advances in experimental medicine and biology 289: 371–88. PMID 1897402.
Seidler, T. (1987). "Effects of additives and thermal treatment on the content of nitrogen compounds and the nutritive value of hake meat". Food / Nahrung 31 (10): 959–70. doi:10.1002/food.19870311007. PMID 3437919.
Seidler, T (1987). "Effects of additives and thermal treatment on the content of nitrogen compounds and the nutritive value of hake meat". Die Nahrung 31 (10): 959–70. doi:10.1002/food.19870311007. PMID 3437919.
http://journals.cambridge.org/download.php?file=%2FPNS%2FPNS4_02%2FS0029665146000321a.pdf&code=44a8dfdde48fb6037fc0936b8a4b398c[dead link]
Buncombe, Andrew (6 August 2007). "Cooking fires add to global warming". The New Zealand Herald. The Independent. Retrieved 4 November 2011.

Links
whale.to/a/vit_c_cons.html
whale.to/a/10_worst.html
ausrawmilk.org
fishbase.org
michaelkummer.com/health/plants-vs-meat
openbiotechnologyjournal.com/VOLUME/13/PAGE/68/FULLTEXT
extoxnet.orst.edu/faqs/natural/plant1.htm (now only accessable via archive.org)
https://str.llnl.gov/str/Food_Mutagens.intro.html (now only accessable via archive.org)
krispin.com/lectin.html
copperwiki.org/index.php/Carcinogens_in_Foods
diagnosisdiet.com/full-article/vegetables
raypeat.com/articles/articles/vegetables.shtml
beyondveg.com
westonaprice.org/health-topics/farm-ranch/livestock-can-save-us/
westonaprice.org/health-topics/farm-ranch/the-politics-and-economics-of-food/
rawpaleodietforum.com
soyonlineservice.co.nz (now only accessable via archive.org)
foodb.ca
ncbi.nlm.nih.gov/pmc/articles/PMC54831/
pubmed.ncbi.nlm.nih.gov/21556514/
pubmed.ncbi.nlm.nih.gov/2132000/



If you find this website useful please link to or mirror it.